organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Methyl pyrazine-2-carboxylate

Chang-Hua Zhang,^a Xue-Jie Tan^{b*} and Dian-Xiang Xing^b

^aDepartment of Chemistry and Chemical Industry, Binzhou University, Binzhou, Shandong Province 256600, People's Republic of China, and ^bDepartment of Chemical Industry, Shandong Institute of Light Industry, Jinan 250353, People's Republic of China

Correspondence e-mail: tanxuejie@163.com

Received 7 October 2009; accepted 21 October 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.066; wR factor = 0.153; data-to-parameter ratio = 8.3.

The title compound, $C_6H_6N_2O_2$, is approximately planar [r.m.s. deviation = 0.0488 (3) Å]. In the crystal, weak intermolecular $C-H\cdots O$ and $C-H\cdots N$ interactions join the molecules into an infinite three-dimensional network.

Related literature

For the synthetic procedure, see: Kim *et al.* (2004). For reduction of heteroaromatic esters, see: Boechat *et al.* (2005). For a description of weak hydrogen bonds, see: Desiraju & Steiner (1999).

Experimental

Crystal data

$C_6H_6N_2O_2$
$M_r = 138.13$
Orthorhombic, P212121
a = 3.865 (2) Å
b = 6.690 (4) Å
c = 24.92 (2) Å

 $V = 644.4 (7) Å^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.11 \text{ mm}^{-1}$ T = 298 K $0.32 \times 0.12 \times 0.05 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer	3378 measured reflections 757 independent reflections
Absorption correction: multi-scan	505 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2000) $T_{min} = 0.980, T_{max} = 0.994$	$R_{\rm int} = 0.080$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.066$	91 parameters
$wR(F^2) = 0.153$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$
757 reflections	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$

Table 1

rijulogen oona geometrij (rij	Hydrogen-bond	d geometry	(Å,	°)
-------------------------------	---------------	------------	-----	----

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C3-H2\cdots O2^{i}$ $C6-H4\cdots N1^{ii}$	0.93 0.96	2.35 2.62	3.205 (3) 3.582 (3)	153 177

Symmetry codes: (i) x + 1, y - 1, z; (ii) -x + 1, $y + \frac{1}{2}$, $-z + \frac{3}{2}$.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

The authors thank the Shandong Distinguished Middle-Aged and Young Scientist Encouragement and the Reward Fund (No. 2006BS04006) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2150).

References

- Boechat, N., Costa, J. C. S., Mendonca, J. S., Paes, K. C., Fernandes, E. L., Oliveira, P. S. M., Vasconcelos, T. R. A. & Souza, M. V. N. (2005). Synth. Commun. 35, 3187–3190.
- Bruker (2000). SMART), SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Desiraju, G. R. & Steiner, T. (1999). *The Weak Hydrogen Bond*. Oxford University Press.
- Kim, J. W., Choi, K. D., Lim, J. W., Lee, K. H. & Lee, S. H. (2004). PCT Int. Appl. WO 2004048369.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2009). E65, o2902 [doi:10.1107/S1600536809043451]

Methyl pyrazine-2-carboxylate

C.-H. Zhang, X.-J. Tan and D.-X. Xing

Comment

Heteroaromatic esters are more easily reduced than the corresponding free acids (Boechat *et al.* 2005). The title compound, (I) (Fig. 1), $[C_6H_6N_2O_2]$, was obtained as an intermediate in the synthesis of another pyrazine-based compound.

All non-hydrogen atoms of (I) are coplanar. The maximum deviation from the mean plane is 0.1249 (4) Å for O2 and the mean deviation is only 0.0488 (3) Å. The almost perfect planarity of the molecule reflects its efficient π -conjugation.

There are no classical hydrogen bonds present in the crystal structure (Spek, 2009). Nevertheless, there are weak C—H…O and C—H…N hydrogen bonds (Table 1, Desiraju & Steiner, 1999) linking the molecules into an infinite three-dimensional network [Fig. 2].

Experimental

Compound (I) was prepared following a procedure published by Kim *et al.* (2004), but the product is not "pale brown" but colorless. Elemental analysis Calcd: C 52.17, H 4.38, N 20.28%. Found: C 51.87, H 4.02, N 20.14%.

Refinement

Since the compound itself is achiral and in the absence of significant anomalous dispersion effects, Friedel pairs were averaged. All H atoms were fixed geometrically and allowed to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, and with $U_{iso}(H) = 1.2 U_{eq}(C)$ for CH groups of the pyrazine ring and $U_{iso}(H) = 1.5 U_{eq}(C)$ for the methyl group.

Figures

Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.

Fig. 2. The packing of (I), viewed down the *a* axis, showing one layer of molecules connected by C—H···O and C—H···N hydrogen bonds (dashed lines).

Methyl pyrazine-2-carboxylate

Crystal data

 $C_6H_6N_2O_2$ $M_r = 138.13$ Orthorhombic, P212121 Hall symbol: P 2ac 2ab a = 3.865 (2) Åb = 6.690 (4) Åc = 24.92 (2) Å V = 644.4 (7) Å³ Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer	757 independent reflections
Radiation source: fine-focus sealed tube	505 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.080$
T = 298 K	$\theta_{\text{max}} = 25.5^{\circ}$
π and ω scans	$\theta_{\min} = 1.6^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2000)	$h = -4 \rightarrow 4$
$T_{\min} = 0.980, \ T_{\max} = 0.994$	$k = -7 \rightarrow 8$
3378 measured reflections	$l = -30 \rightarrow 22$

 $F_{000} = 288$

 $\theta = 1.6-25.5^{\circ}$

 $\mu = 0.11 \text{ mm}^{-1}$

Needle, colourless

 $0.32 \times 0.12 \times 0.05 \text{ mm}$

T = 298 K

 $D_{\rm x} = 1.424 {\rm Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 378 reflections

Ref

Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.066$	H-atom parameters constrained
$wR(F^2) = 0.153$	$w = 1/[\sigma^2(F_o^2) + (0.0698P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\text{max}} = 0.001$
757 reflections	$\Delta \rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$
91 parameters	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure invariant direct	

Primary atom site location: structure-invariant direct Extinction correction: none methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
C1	0.2013 (5)	0.6623 (3)	0.93604 (7)	0.0546 (6)
H1	0.0959	0.7714	0.9524	0.065*
C2	0.2602 (4)	0.6690 (2)	0.88246 (6)	0.0371 (5)
C3	0.5035 (6)	0.3674 (2)	0.88599 (7)	0.0561 (6)
H2	0.6133	0.2594	0.8698	0.067*
C4	0.4367 (6)	0.3607 (3)	0.93986 (7)	0.0604 (6)
Н3	0.4999	0.2470	0.9589	0.072*
C5	0.1459 (4)	0.8493 (2)	0.85163 (6)	0.0395 (5)
C6	0.1405 (5)	1.0165 (2)	0.76991 (8)	0.0642 (7)
H4	0.2569	1.0139	0.7359	0.096*
Н5	0.1955	1.1385	0.7883	0.096*
H6	-0.1049	1.0089	0.7643	0.096*
N1	0.4157 (4)	0.52391 (19)	0.85628 (6)	0.0479 (5)
N2	0.2869 (5)	0.5082 (2)	0.96584 (6)	0.0665 (6)
01	0.2516 (3)	0.84861 (17)	0.80180 (4)	0.0514 (4)
O2	-0.0298 (4)	0.97530 (17)	0.87108 (5)	0.0690 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0681 (13)	0.0448 (11)	0.0508 (10)	0.0017 (11)	0.0019 (11)	0.0020 (10)
C2	0.0335 (8)	0.0284 (8)	0.0494 (10)	0.0006 (8)	0.0029 (9)	0.0011 (8)
C3	0.0621 (12)	0.0330 (9)	0.0733 (12)	0.0112 (11)	-0.0098 (11)	0.0040 (10)
C4	0.0677 (13)	0.0406 (10)	0.0728 (12)	0.0014 (11)	-0.0187 (12)	0.0199 (10)
C5	0.0409 (10)	0.0302 (8)	0.0475 (10)	-0.0001 (9)	0.0019 (9)	0.0023 (9)
C6	0.0719 (15)	0.0541 (11)	0.0666 (13)	0.0086 (12)	-0.0045 (11)	0.0180 (11)
N1	0.0535 (9)	0.0344 (7)	0.0559 (9)	0.0089 (8)	-0.0002 (8)	-0.0017 (8)
N2	0.0891 (12)	0.0549 (10)	0.0554 (10)	0.0024 (11)	-0.0065 (10)	0.0083 (9)
01	0.0664 (8)	0.0412 (6)	0.0465 (7)	0.0105 (7)	0.0004 (7)	0.0083 (6)
O2	0.0935 (10)	0.0428 (7)	0.0705 (9)	0.0264 (8)	0.0187 (8)	-0.0033 (7)

Geometric parameters (Å, °)

C1—N2	1.312 (2)	C4—N2	1.315 (3)
C1—C2	1.355 (2)	С4—Н3	0.9300
С1—Н1	0.9300	C5—O2	1.186 (2)
C2—N1	1.315 (2)	C5—O1	1.307 (2)
C2—C5	1.497 (2)	C6—O1	1.441 (2)

supplementary materials

C3—N1	1.327 (2)	С6—Н4	0.9600
C3—C4	1.368 (3)	С6—Н5	0.9600
С3—Н2	0.9300	С6—Н6	0.9600
N2—C1—C2	122.76 (17)	O2—C5—O1	124.72 (15)
N2—C1—H1	118.6	O2—C5—C2	122.14 (15)
C2—C1—H1	118.6	O1—C5—C2	113.11 (14)
N1—C2—C1	122.77 (15)	O1—C6—H4	109.5
N1—C2—C5	118.36 (15)	O1—C6—H5	109.5
C1—C2—C5	118.87 (15)	H4—C6—H5	109.5
N1—C3—C4	121.68 (17)	O1—C6—H6	109.5
N1—C3—H2	119.2	Н4—С6—Н6	109.5
С4—С3—Н2	119.2	Н5—С6—Н6	109.5
N2—C4—C3	122.83 (17)	C2—N1—C3	114.99 (15)
N2—C4—H3	118.6	C1—N2—C4	114.94 (16)
С3—С4—Н3	118.6	C5—O1—C6	115.33 (14)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \!$	
C3—H2···O2 ⁱ	0.93	2.35	3.205 (3)	153	
C6—H4…N1 ⁱⁱ	0.96	2.62	3.582 (3)	177	
Symmetry codes: (i) $x+1$, $y-1$, z ; (ii) $-x+1$, $y+1/2$, $-z+3/2$.					

Fig. 1

Fig. 2

